历史上第一次可控核聚变实验,实现了“核聚变点火”(fusion ignition)
【2022.12.13】消息,美国能源部周二宣布,其下属劳伦斯利弗莫尔国家实验室(LLNL)国家点火设施的一个团队进行了历史上第一次可控核聚变实验,实现了“核聚变点火”(fusion ignition),创造了历史。这意味着人类在可控核聚变实验中,首次首次超出了聚变阈值,实现了大于1的能量增益(也即从聚变中产生的能量,比用于驱动它的激光能量更多)。
美国能源部长 Jennifer Granholm 指出,这次实验的成功,是在核聚变研究,在核技术,在能源史上都极为重要的里程碑事件。
而对于本次实验的成功,Budil 博士对高能激光所扮演的地位给予了幽默的评价:
“就像大家知道的那样,我们的实验室简称 LLNL,其实是‘Lasers, Lasers, Nothing but Lasers’ 的意思……”
LLNL 主任 Dr. Kim Budil
白宫首席科学顾问 Arati Prabhakar 博士,更是感慨万千:
“在我19岁的时候,我就在这个实验室实习过,当时他们给了我一根‘激光笔’玩,那个夏天我过得非常充实。
后来我离开了这里,去做了其它更不值得一提的工作。但我的同事们,以及他们的后辈和后辈的后辈,却从未停止尝试……
他们获得过骄人的成绩,也历经了无数令人难以置信的挑战和痛苦——今天的我们都已经白了头发,但他们从未放弃这一目标,直到上周……我相信这是一个关于‘坚持’的最佳例证。”
美国能源部称,12月5日,LLNL核聚变实验释放的能量超过了输送给目标的激光能量,跨越了核聚变点火的阈值。
为了实现聚变点火,科学家使用了总计192束高能激光,射向装有氘﹣氚(读作dāo-chuān)燃料球的环空器。
环空器 (hohlhraum) 是一种圆筒形器皿,头尾两端开孔,内壁涂有黄金等特殊涂层。在下图中,美国核安全局副局长 Marvin Adams 展示了实验所用的环空器(同款)。
注意,环空器其实并非他手中的“玻璃杯”,而是在里面装着的另一个小筒,大概只有手指指节的大小,如他的左手所示:
在 NIF 的实验中,科学家将燃料球装在环空器内并进行加压,然后通过环空器两端的孔洞射入激光,照射环空器的内壁。
特殊涂层被加热到大约300万℃的高温,发出强烈的 X 光束,进而照射在燃料球上。
燃料球的外层被X光照射,产生爆裂。其反作用力会以震波的形式继续向内部传播,使得内部的氘﹣氚元素形成高压高温,产生自发性的燃烧,导致内爆(能量和物质快速对称地向内聚合),并连锁触发聚变反应。
——以上的过程,就是高能量惯性约束聚变的基本过程。它的用时极短,只有大约几十甚至上百万分之一秒。它的尺度也很小,毕竟燃料球只有“一枚花椒粒”那么大。
但是,也正是在这个极短的过程中,这个环空器内,其实模拟了一颗微小的恒星。
接下来,让我们来深入浅出地了解一下,这次意义无比重大的可控核聚变实验,这场长达60年的追逐,到底是怎么一回事。
这样的实验,在 NIF 并非第一次进行。事实上,该实验室在过去已经进行过“无数次”可控聚变实验了。
而在过去,无论是 NIF/LLNL,还是欧洲的公立研究机构,以及全世界各国各种各样的私营研究机构,进行的所有可控聚变实验,都从未实现过盈亏平衡——说白了,就是“为了发电,反而用了更多的电”。
美国知名科普作者、天体物理学家 Neil deGrasse Tyson 表示:
“你获得的能量比你投入的能量更多——我们终于来到了这一天。”
核聚变研究从上世纪50年代就已经开始,但进展一直非常缓慢(以至于过去随便一点小成绩都值得大书特书)。在过去,最大的挑战是高温问题难以解决。
具体来说,科学家需要在实验室环境内创造出像太阳那样的极高温、高压的环境,才能让燃料加热到离子化产生聚变。然而一般容器无法应付如此高的温度,需要对容器和反应进行“约束”,放置离子溢出容器。
就是聚变产生的能量,比触发聚变所消耗的科学能量更高。也就是说,用这种做法来产生能源,值了!
具体来说,实验总计使用了大约300兆焦的电能,聚焦到高能激光束的输出达到了2.05兆焦,而通过科学的观测手段取得的实验结果显示,瞬时聚变产生的能量达到了3.15兆焦。
产生的能量,除以激光输出的能量,结果大于一,这种情况在科学上称为“科学能源盈亏平衡” (scientific energy breakeven)。
大家可能还记得,我们在前一小节提到,NIF 实验人员对激光照射反应逻辑和对环空器的设计,都是为了提高聚变反应的效率,让燃料球“内爆”的再快一点。
为什么要提高效率?因为如果效率能够超过某个阈值,就会出现一种极为特殊的情况:产生的能量超过输入的能量,也即实现大于1的能量增益(正能量增益)
这样的情况,在过去难以实现。科学家们花了整整70年,距离这个目标却一直非常远:比如在2013年10月15日,NIF 的某一次前序测试才勉强实现了0.0078的能量增益,比正能量增益的1/125还不如。
而在十年后,NIF 终于跨过了正能量增益这一里程碑:在不到10纳秒(1秒=十亿纳秒)的时间里,整个燃料球完成了它的聚变反应,并实现了超过1的能量增益——这当然是件非常值得令人兴奋的事情。